new publication: Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook

new publication: Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook

April 22, 2015

walz_vector_parasites_figure1The review article lead by Yvonne Walz is published online first.  Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions.

We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised.

We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is – in principle – far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from.

Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.

 

Yvonne Walz, Martin Wegmann, Stefan Dech, Giovanna Raso and Jürg Utzinger (2015) Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook. Parasites & Vector http://www.parasitesandvectors.com/content/8/1/163

you may also like:

Our Contributions to the ESA Living Planet Symposium 2025

Our Contributions to the ESA Living Planet Symposium 2025

This week, the global Earth observation community gathered in Vienna for the ESA Living Planet Symposium 2025 — one of the most anticipated events for anyone passionate about understanding our planet through remote sensing. Our team was proud to contribute with an...

“Super-Test-Site Würzburg” consortium meeeting

“Super-Test-Site Würzburg” consortium meeeting

The core team of our “Super-Test-Site Würzburg” consortium (University of Würzburg, the Karlsruhe Institute of Technology, the Friedrich-Alexander-University Erlangen-Nürnberg and the German Aerospace Center) met again in Würzburg on the 4th of June 2025.   At this...

New paper on the digital divide in Africa’s cities published

New paper on the digital divide in Africa’s cities published

Our team of researchers from the Earth Observation Center (EOC) of the German Aerospace Center (DLR), the Martin-Luther-Universität Halle-Wittenberg, and our Earth Observation Research Cluster (EORC) published a new study on the digital divide in Africa: A...