Spectral Unmixing Functionality in RStoolbox

Spectral Unmixing Functionality in RStoolbox

March 20, 2018

Please find below a blog post by one of our EAGLE M.Sc. students, Jakob Schwalb-Willmann, about his implementation of spectral unmixing into the RStoolbox R package, developed at our department by Benjamin Leutner:

 

“Recently, in January, I finished the development of the first version of a spectral unmixing function being part of RStoolbox, an R package offering numerous tools for remote sensing analysis written by Benjamin Leutner. The multiple endmember spectral mixture analysis (mesma) function makes it possible to unmix multi- and hyper-spectral imagery by sets of spectral endmember profiles.

For this, a non-negative least squares (NNLS) solver was implemented. NNLS is a statistical approach to fit model parameters to data, assuming that the model parameters are always expressed linearly to those not expressed by the model (unknown parameters) and that the model parameters can never be negative. There are different approaches to solve the NNLS problem. A popular one had been introduced by Lawson & Hanson (1974), which can be considered as fundamental work on practical Least Square Problems solving. It was originally published as FORTRAN code, which is still widely used, e.g. by the R NNLS package or by the Python scipy library. However, compared to newer developing frameworks and languages emerged, the FORTRAN implementation is relatively slow. Thus and to be independent from existing solutions, I wrote a C++ NNLS solver for mesma(), based on a sequential coordinate-wise algorithm (SCA) introduced by Franc et al. (2005). The latter method inherits strong control about the solver’s iteration stopping conditions.

Apart from NNLS, we are planning to add further solver methods (which is why I am currently looking for other practicable unmixing methods).

In this post, I want to demonstrate, how to use the unmixing function RStoolbox::mesma() by giving an example. It can be reproduced on any device running R and having installed the current RStoolbox beta. To do so, execute devtools::install_github(“bleutner/RStoolbox”).

First, we are going to load the Landsat example imagery delivered with RStoolbox:

1
2
3
4
5
6
7
8
9
10
#if not already done, install RStoolbox beta:
devtools::install_github("bleutner/RStoolbox")
#required caret 6.0-79, which is not on CRAN yet
#load packages
library(raster)
library(RStoolbox)
#load an example dataset
data(lsat)

 

To create some endmember spectra, we simply collect the spectral profiles of “water” and “land” from our imagery. We keep it simple here – instead, you could use spectra from a spectral library.

1
2
3
4
5
#make up some endmember spectra: water and land
em_names <- c("water", "land")
pts <- data.frame(class=em_names, cell = c(47916,5294))
em <- lsat[pts$cell]
rownames(em) <- em_names

 

That’s all for the pre-processing! Now you have an image and two endmembers. Note that you need to have at least two endmembers (as we have in this example) to unmix an image. Also, take a look at “em” and “lsat” before continuing: Both have the same spectral resolution (band number), which is a prerequisite. This means that if you want to use data from a spectral library for unmixing, you simply need to resample the data to the same spectral resolution of your imagery to use mesma().

Now, just call mesma(). It returns a probability raster, each layer representing one class of your endmembers, except for the last layer, which gives you the RMSE for each pixel.

1
2
#unmix the image for water and land
probs <- mesma(lsat, em, method = "NNLS")

 

Since we decided to develop the NNLS solver from scratch in C++ and not to use existing older FORTRAN implementations, mesma() is quiet fast. It supports parallel processing, if you want to unmix large amounts of data and have multiple CPU cores available. To do so, just create a cluster before calling mesma() using raster::beginCluster() and stop it afterwards using raster::endCluster().

Now, let us look at the output’s:

1
2
3
#take a look
raster::plot(probs$water, col = c("white","blue"))
raster::plot(probs$land, col = c("white","brown"))

 

Here are the probabilities for water…

and here they are for land:

You clearly see, how mesma() could easily differentiate between these two endmembers with only one spectrum per class. If you have ideas or find a problem, please report us via GitHub!

 

References:

Franc, V., Hlaváč, V., & Navara, M. (2005). Sequential coordinate-wise algorithm for the non-negative least squares problem. In: International Conference on Computer Analysis of Images and Patterns (pp. 407-414). Berlin, Heidelberg.

Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems (Vol. 15). Siam.

you may also like:

PhD position: Earth Observation of drought and fire impacts

PhD position: Earth Observation of drought and fire impacts

Job Announcement: PhD Position on EO research of Drought, Fire and Vegetation in Kruger National Park, South Africa Position: PhD ResearcherStudy Area: Kruger National Park, South AfricaApplication Deadline: until position is filledStart Date: as soon as possible...

Presentation at Wiener Planungswerkstatt

Presentation at Wiener Planungswerkstatt

On 16 January 2025, an evening event on the topic of urban development took place at the "Wiener Planungswerkstatt" in Vienna – see here: https://www.linkedin.com/events/wieundwowirwohnen-wollen-soziol7271805797850861569/about/. The event was organized and...

Visit to Seestadt Aspern in Vienna

Visit to Seestadt Aspern in Vienna

Vienna's Seestadt Aspern is one of the current largest urban development areas in Europe. By the 2030s, a brand new city will be fully completed in the east of Vienna. Living space for more than 25,000 people and over 20,000 jobs, education, and formation...

Exchange with colleagues from AIT Austrian Institute of Technology

Exchange with colleagues from AIT Austrian Institute of Technology

On 16 January 2025, Ariane Droin, Henri Debray and Hannes Taubenböck from EORC and the EOC of DLR were invited to the AIT Austrian Institute of Technology GmbH in Vienna as part of the UrbanSky project. The Urban Sky research project is carrying out a needs and...

Empowering Students with SAGA GIS for Environmental Applications

Empowering Students with SAGA GIS for Environmental Applications

At EAGLE Earth Observation, we are committed to equipping our students with the tools and knowledge needed to excel in the field of environmental science. As part of this effort, our students are exploring the power of various scientific open-source software packages...

EUSI meets GZS

EUSI meets GZS

Following the European Space Imaging Conference (EUSI) in December 2024 (DLR and EORC contributed to the conference. We reported on this – please see here: https://remote-sensing.org/keynote-presentation-at-eusi-conference-2024/), the long-standing partners met...