Change Vector Analysis explained graphically

Change Vector Analysis explained graphically

January 19, 2016

We explained in our book “Remote Sensing and GIS for Ecologists – Using Open Source Software” among other change detection methods also the change vector analysis practically using the rasterCVA() command in the RStoolbox package, as well as outlined the approach graphically. During my last lecture on temporal and spatial remote sensing approaches I realized that the graphic needs some fixing as well as the RStoolbox function, moreover, certain explanations were missing. Hence, Benjamin Leutner adapted the rasterCVA() command and I tested it again and created new graphics explaining this approach for land cover change analysis.

 

land_cover_change_vector_NEW_Wegmann_Leutner_www_remote-sensing_eu_Ecology_Book

general Change Vector analysis explained. Graphic from the book “Remote Sensing and GIS for Ecologists

The first graph that is also in our book shows the general approach. Two bands for each year (e.g. the RED and NIR band, but also the Tassled Cap output can be used) are taken and the changes in pixel values between these two years are shown as angle and magnitude.

 

We realized some things were missing:  first the explanation what the angle actually means and second a link of actual results and the xy-graph.

change_vector_analysis_angle_magnitude_NEW_Wegmann_Leutner_www_remote-sensing_eu_and_BOOK_ecosens_org

Change Vector analysis explained on three change classes using the actual rasterCVA() output and band values.

In these new figures we show the actual results of the land cover change vector analysis using band 3 and 4 of Landsat (E)TM for the study region used in our book and three angles and magnitudes of pixels values between 1988 and 2011.

change_vector_Angle_explanation_Wegmann_Leutner_www_remote-sensing_eu_BOOK_RS_Ecology

Meaning of angle and magnitude values from rasterCVA() analysis in RStoolbox

In the second image we outline the meaning of the angle provided by rasterCVA() as well as the magnitude which is the euclidean distance of the pixel values between 1988 and 2011.

 

Please approach us if you have any suggestion how to improve it or if we introduced any errors.

Please update to the newest development version to access the updated RStoolbox functionality!

 

More updates and graphics provided on the books’ webpage.

follow us and share it on:

you may also like:

Exploring the Power of Orfeo Toolbox

Exploring the Power of Orfeo Toolbox

This week, our Eagle students have been soaring deeper into the world of spatial science with the Orfeo Toolbox (OTB) — a powerful open-source library for remote sensing image processing. Originally developed by the French Space Agency (CNES), OTB offers a rich suite...

Meet EORC at Upcoming Earth Observation Conferences & Workshops

Meet EORC at Upcoming Earth Observation Conferences & Workshops

The coming months offer many opportunities to connect with the Earth Observation (EO) community across a wide range of conferences, workshops, and focused scientific meetings. These events are not only places to present results, but also spaces for open exchange,...

New publication on using open webcam data for traffic monitoring

New publication on using open webcam data for traffic monitoring

Researchers from the Earth Observation Center (EOC) of the German Aerospace Center (DLR) in Oberpfaffenhofen and our Earth Observation Research Cluster (EORC) of the University of Würzburg teamed up for a study on using open webcam data for traffic monitoring. The...

A Strong Base at the Top: Research and Training at Schneefernerhaus

A Strong Base at the Top: Research and Training at Schneefernerhaus

We are grateful for the long-standing and growing opportunity to work with the Schneefernerhaus research station on Zugspitze, Germany’s highest mountain. For our work at the EORC, this collaboration provides an exceptional foundation for research on snow, ice,...

Share This