updated RStoolbox version

updated RStoolbox version

January 29, 2016

The RStoolbox R package has been updated after some testing in courses and by colleagues. Please update your package using update.packages() or install the RStoolbox again.

New functions are:

  • new function `validateMap()` for assessing map accuracy separately from model fitting, e.g. after majority or MMU filtering
  • new function `getValidation()` to extract specific validation results of superClass objects (proposed by James Duffy)
  • new spectral index NDVIc (proposed by Jeff Evans)
  • new argument scaleFactor for `spectralIndices()` for calculation of EVI/EVI2 based on scaled reflectance values
  • implemented dark object subtraction radCor(..,method=’sdos’) for Landsat 8 data (@BayAludra, #4)

various changes were applied:

  • superClass() based on polygons now considers only pixels which have their center coordinate within a polygon
  • rasterCVA() now returns angles from 0 to 360° instead of 0:45 by quadrant (reported by Martin Wegmann and explained here)
  • improved dark object DN estimation based on maximum slope of the histogram in `estimateHaze` (@BayAludra, #4)

And some bugs fixed:

  • superClass() failed when neither valData or trainPartition was specified. regression introduced in 0.1.3 (reported by Anna Stephani)
  • spectralIndices() valid value range of EVI/EVI2 now [-1,1]
  • radCor() returned smallest integer instead of NA for some NA pixels
  • fix ‘sdos’ for non-contiguous bands in radCor (@BayAludra, #4)

follow us and share it on:

you may also like:

PhD submitted by Julia Rieder

PhD submitted by Julia Rieder

We are pleased to share that our PhD student Julia Rieder has successfully submitted her doctoral thesis! Her dissertation, entitled “Abiotic and biotic drivers of drought responses in European beech (Fagus sylvatica L.) inferred from field and LiDAR data”,...

New Funded Project on Automated Detection of Mining Areas

New Funded Project on Automated Detection of Mining Areas

In a newly launched research project funded by the KSB Foundation, we focus on the automated identification of mining areas based on remote sensing data. The aim is to systematically detect large-scale mining activities and to track their spatial and temporal...

New Earth Observation Project on Thermal Satellite Data

New Earth Observation Project on Thermal Satellite Data

We are honored that we are part of a new research and development project, focusing on the development of a satellite constellation capable of delivering high-resolution thermal data with a high revisit rate. The observations aim to make an important contribution to...

Season’s Greetings from the University of Würzburg

Season’s Greetings from the University of Würzburg

As the year draws to a close, we would like to also share the warm season’s greetings from the University of Würzburg to our partners and friends beyond the university. The past months have been marked by commitment, collaboration, and a shared dedication to academic...

Share This