New publication on Cocoa agroforestry systems published

New publication on Cocoa agroforestry systems published

November 3, 2022

Our PhD student Dan Kanmegne Tamga has published his first paper on “Modelling the spatial distribution of the classifcation error of remote sensing data in cocoa agroforestry systems” in cooperation with his supervisory team and World Agroforestry (ICRAF). This work has been performed in the frame work of WASCAL-DE-Coop.

From the abstract:

Cocoa growing is one of the main activities in humid West Africa, which is mainly grown in pure stands. It is the main driver of deforestation and encroachment in protected areas. Cocoa agroforestry systems which have been promoted to mitigate deforestation, needs to be accurately delineated to support a valid monitoring system. Therefore, the aim of this research is to model the spatial distribution of uncertainties in the classifcation cocoa agroforestry. The study was carried out in Côte d’Ivoire, close to the Taï National Park. The analysis followed three steps (i) image classifcation based on texture parameters and vegetation indices from Sentinel-1 and -2 data respectively, to train a random forest algorithm. A classifed map with the associated probability maps was generated. (ii) Shannon entropy was calculated from the probability maps, to get the error maps at diferent thresholds (0.2, 0.3, 0.4 and 0.5). Then, (iii) the generated error maps were analysed using a Geographically Weighted Regression model to check for spatial autocorrelation. From the results, a producer accuracy (0.88) and a user’s accuracy (0.91) were obtained. A small threshold value overestimates the classifcation error, while a larger threshold will underestimate it. The optimal value was found to be between 0.3 and 0.4. There was no evidence of spatial autocorrelation except for a smaller threshold (0.2). The approach differentiated cocoa from other landcover and detected encroachment in forest. Even though some information was lost in the process, the method is efective for mapping cocoa plantations in Côte d’Ivoire.

you may also like:

New review on slums and urban deprived areas

New review on slums and urban deprived areas

Researchers from TU Darmstadt, Karlstad University in Sweden, and our Earth Observation Research Cluster (EORC) at Julius-Maximilians-University Würzburg collaborated on a new study that looks at how science addresses urban deprived areas and slums worldwide. The...

Remote Sensing for Germany #1

Remote Sensing for Germany #1

Remote Sensing for Germany #1 In a recent #DLR press release (https://www.dlr.de/de/aktuelles/nachrichten/2025/dlr-zeigt-hohe-hitzebelastung-in-deutschen-grossstaedten), our remote sensing (RS) works on heat exposure in German cities have been shown.  The...

New study on invasive species in Rwanda

New study on invasive species in Rwanda

A new publication by EORC members Lilly Schell, Insa Otte, Sarah Schönbrodt-Stitt and Konstantin Müller, was just published   in the Journal Frontiers in Plant Science. Their study, “Synergistic use of satellite, legacy, and in situ data to predict spatio-temporal...

Poster Presentations at the GfÖ-Conference in Würzburg

Poster Presentations at the GfÖ-Conference in Würzburg

Being part of the organizers of this year's GfÖ-Conference in Würzburg our staff members Sonja Maas, Jakob Schwalb-Willmann and Maninder Singh Dhillon were happy to present the posters on their research topics today. The annual meeting of the GfÖ (Society for Ecology)...

Bridging Scales: How Radar Satellites supports Crop Monitoring

Bridging Scales: How Radar Satellites supports Crop Monitoring

In an era of climate uncertainty and increasing pressure on agricultural systems, understanding how crops grow and respond to environmental stress is more important than ever. A new study led by researchers from Martin-Luther-University Halle-Wittenberg, in close...