New publication on large-scale urban population estimation using Earth observation data

New publication on large-scale urban population estimation using Earth observation data

March 12, 2024

Researchers from the Technical University of Munich (TUM), the Earth Observation Center (EOC) of the German Aerospace Center (DLR) in Oberpfaffenhofen, and our Earth Observation Research Cluster (EORC) of the University of Würzburg teamed up for a study on large-scale urban population estimation using Earth observation data. The paper titled “Interpretable deep learning for consistent large-scale urban population estimation using Earth observation data” was just published in the International Journal of Applied Earth Observation and Geoinformation by Sugandha Doda, Matthias Kahl, Kim Ouan, Ivica Obadic, Yuanyuan Wang, Hannes Taubenböck and Xiao Xiang Zhu.

 

Here is the abstract of the paper: Accurate and up-to-date mapping of the human population is fundamental for a wide range of disciplines, from effective governance and establishing policies to disaster management and crisis dilution. The traditional method of gathering population data through census is costly and time-consuming. Recently, with the availability of large amounts of Earth observation data sets, deep learning methods have been explored for population estimation; however, they are either limited by census data availability, inter-regional evaluations, or transparency. In this paper, we present an end-to-end interpretable deep learning framework for large-scale population estimation at a resolution of 1 km that uses only the publicly available data sets and does not rely on census data for inference. The architecture is based on a modification of the common ResNet-50 architecture tailored to analyze both image-like and vector-like data. Our best model outperforms the baseline random forest model by improving the RMSE by around 9% and also surpasses the community standard product, GHSPOP, thus yielding promising results. Furthermore, we improve the transparency of the proposed model by employing an explainable AI technique that identified land use information to be the most relevant feature for population estimation. We expect the improved interpretation of the model outcome will inspire both academic and non-academic end users, particularly those investigating urbanization or sub-urbanization trends, to have confidence in the deep learning methods for population estimation.

 

Here is the link to the full paper: https://www.sciencedirect.com/science/article/pii/S1569843224000852

 

This work is also related to earlier works on this domain:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274504

https://www.nature.com/articles/s41597-022-01780-x

 

 

you may also like:

PhD position: Earth Observation of drought and fire impacts

PhD position: Earth Observation of drought and fire impacts

Job Announcement: PhD Position on EO research of Drought, Fire and Vegetation in Kruger National Park, South Africa Position: PhD ResearcherStudy Area: Kruger National Park, South AfricaApplication Deadline: until position is filledStart Date: as soon as possible...

Presentation at Wiener Planungswerkstatt

Presentation at Wiener Planungswerkstatt

On 16 January 2025, an evening event on the topic of urban development took place at the "Wiener Planungswerkstatt" in Vienna – see here: https://www.linkedin.com/events/wieundwowirwohnen-wollen-soziol7271805797850861569/about/. The event was organized and...

Visit to Seestadt Aspern in Vienna

Visit to Seestadt Aspern in Vienna

Vienna's Seestadt Aspern is one of the current largest urban development areas in Europe. By the 2030s, a brand new city will be fully completed in the east of Vienna. Living space for more than 25,000 people and over 20,000 jobs, education, and formation...

Exchange with colleagues from AIT Austrian Institute of Technology

Exchange with colleagues from AIT Austrian Institute of Technology

On 16 January 2025, Ariane Droin, Henri Debray and Hannes Taubenböck from EORC and the EOC of DLR were invited to the AIT Austrian Institute of Technology GmbH in Vienna as part of the UrbanSky project. The Urban Sky research project is carrying out a needs and...

Empowering Students with SAGA GIS for Environmental Applications

Empowering Students with SAGA GIS for Environmental Applications

At EAGLE Earth Observation, we are committed to equipping our students with the tools and knowledge needed to excel in the field of environmental science. As part of this effort, our students are exploring the power of various scientific open-source software packages...

EUSI meets GZS

EUSI meets GZS

Following the European Space Imaging Conference (EUSI) in December 2024 (DLR and EORC contributed to the conference. We reported on this – please see here: https://remote-sensing.org/keynote-presentation-at-eusi-conference-2024/), the long-standing partners met...