new article: ecological modelling to improve remote sensing disease risk analysis

new article: ecological modelling to improve remote sensing disease risk analysis

November 30, 2015

A new article by our former PhD student Dr. Yvonne Walz just got published. The article “Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling” aims at the advantages of using spatial modelling approaches for disease risk analysis using remote sensing. Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.

http://geospatialhealth.net/index.php/gh/article/view/398

follow us and share it on:

you may also like:

Exploring the Power of Orfeo Toolbox

Exploring the Power of Orfeo Toolbox

This week, our Eagle students have been soaring deeper into the world of spatial science with the Orfeo Toolbox (OTB) — a powerful open-source library for remote sensing image processing. Originally developed by the French Space Agency (CNES), OTB offers a rich suite...

Meet EORC at Upcoming Earth Observation Conferences & Workshops

Meet EORC at Upcoming Earth Observation Conferences & Workshops

The coming months offer many opportunities to connect with the Earth Observation (EO) community across a wide range of conferences, workshops, and focused scientific meetings. These events are not only places to present results, but also spaces for open exchange,...

Snow Research at Schneefernerhaus, Zugspitze

Snow Research at Schneefernerhaus, Zugspitze

Recently, our team carried out another successful field campaign at the Schneefernerhaus research station on the Zugspitze in the Alps. Together with our EAGLE students, we collected UAS-based environmental data alongside detailed in-situ measurements of snow...

Diversifying Energy Crops through Biogas Flower Mixtures

Diversifying Energy Crops through Biogas Flower Mixtures

In a recent contribution to Praxis Agrar - the practice-oriented online platform published by the Bundesinformationszentrum Landwirtschaft (BZL) - biogas flower mixtures are presented as a viable alternative to maize-dominated energy cropping systems. The article...

Share This