BSc Sophia Wisboeck using LiDAR and fCover to explain home range sizes

BSc Sophia Wisboeck using LiDAR and fCover to explain home range sizes

May 5, 2015

BSc_Sophia_Wisboeck_2015_UniversityWuerzburg_Remote-Sensing_euSophia Wisboeck handed in her BSc thesis “Explaining variation in home range size of red deer (cervus elaphus) in the Bavarian Forest National Park using LiDAR derived metrics on forest structure and fractional cover”. Her analysis of fractional cover and Lidar to explain home range sizes of red deer was very interesting and she gained valuable insights. Please read her abstract if you are interested: Effective conservation strategies and management are crucial to protect animals in their natural environment and provide them with the space and resources they need. However, further ecological research on animal behavior and habitat use is indispensable to provide a profound basis for such management decisions. One important issue hereof is understanding species’ spatial behavior, especially the use of home ranges which are defined by „that area traversed by the individual in its normal activities of food gathering, mating, and caring for young“ (Burt 1943). In general, home range selection can be summarized as trade-off between food availability and shelter. However, for ungulate species, home ranges are often found to vary substantially in size. The objective of this thesis is to analyze home range data of red deer (cervus elaphus) in the Bavarian Forest National Park and find possible explanations for their variation in size. Home ranges of five red deer individuals have been detected using GPS collars and serve as basis for the analysis. Information on forest structure derived from airborne LiDAR remote sensing, i. e. forest density in different height strata and canopy height metrics are related to the differing sizes of the home ranges. Furthermore, the use of fractional cover (fCover), a continuous land cover estimation method, to explain home range size is investigated. Analysis is carried out by fitting linear models. Results reveal that fCover is a promising method to predict variation in home range size, whereby it appears that with higher spatial resolution its predictive potential increases. LiDAR, in contrast, is not proved suitable for explaining variation in home range size under the circumstances given in this thesis.

supervised by Martin Wegmann, data provided by Benjamin Leunter and Mirjana Bevanda via the NP Bavarian Forest

you may also like:

PhD position: Earth Observation of drought and fire impacts

PhD position: Earth Observation of drought and fire impacts

Job Announcement: PhD Position on EO research of Drought, Fire and Vegetation in Kruger National Park, South Africa Position: PhD ResearcherStudy Area: Kruger National Park, South AfricaApplication Deadline: until position is filledStart Date: as soon as possible...

Presentation at Wiener Planungswerkstatt

Presentation at Wiener Planungswerkstatt

On 16 January 2025, an evening event on the topic of urban development took place at the "Wiener Planungswerkstatt" in Vienna – see here: https://www.linkedin.com/events/wieundwowirwohnen-wollen-soziol7271805797850861569/about/. The event was organized and...

Visit to Seestadt Aspern in Vienna

Visit to Seestadt Aspern in Vienna

Vienna's Seestadt Aspern is one of the current largest urban development areas in Europe. By the 2030s, a brand new city will be fully completed in the east of Vienna. Living space for more than 25,000 people and over 20,000 jobs, education, and formation...

Exchange with colleagues from AIT Austrian Institute of Technology

Exchange with colleagues from AIT Austrian Institute of Technology

On 16 January 2025, Ariane Droin, Henri Debray and Hannes Taubenböck from EORC and the EOC of DLR were invited to the AIT Austrian Institute of Technology GmbH in Vienna as part of the UrbanSky project. The Urban Sky research project is carrying out a needs and...

Empowering Students with SAGA GIS for Environmental Applications

Empowering Students with SAGA GIS for Environmental Applications

At EAGLE Earth Observation, we are committed to equipping our students with the tools and knowledge needed to excel in the field of environmental science. As part of this effort, our students are exploring the power of various scientific open-source software packages...

EUSI meets GZS

EUSI meets GZS

Following the European Space Imaging Conference (EUSI) in December 2024 (DLR and EORC contributed to the conference. We reported on this – please see here: https://remote-sensing.org/keynote-presentation-at-eusi-conference-2024/), the long-standing partners met...