BSc Sophia Wisboeck using LiDAR and fCover to explain home range sizes

BSc Sophia Wisboeck using LiDAR and fCover to explain home range sizes

May 5, 2015

BSc_Sophia_Wisboeck_2015_UniversityWuerzburg_Remote-Sensing_euSophia Wisboeck handed in her BSc thesis “Explaining variation in home range size of red deer (cervus elaphus) in the Bavarian Forest National Park using LiDAR derived metrics on forest structure and fractional cover”. Her analysis of fractional cover and Lidar to explain home range sizes of red deer was very interesting and she gained valuable insights. Please read her abstract if you are interested: Effective conservation strategies and management are crucial to protect animals in their natural environment and provide them with the space and resources they need. However, further ecological research on animal behavior and habitat use is indispensable to provide a profound basis for such management decisions. One important issue hereof is understanding species’ spatial behavior, especially the use of home ranges which are defined by „that area traversed by the individual in its normal activities of food gathering, mating, and caring for young“ (Burt 1943). In general, home range selection can be summarized as trade-off between food availability and shelter. However, for ungulate species, home ranges are often found to vary substantially in size. The objective of this thesis is to analyze home range data of red deer (cervus elaphus) in the Bavarian Forest National Park and find possible explanations for their variation in size. Home ranges of five red deer individuals have been detected using GPS collars and serve as basis for the analysis. Information on forest structure derived from airborne LiDAR remote sensing, i. e. forest density in different height strata and canopy height metrics are related to the differing sizes of the home ranges. Furthermore, the use of fractional cover (fCover), a continuous land cover estimation method, to explain home range size is investigated. Analysis is carried out by fitting linear models. Results reveal that fCover is a promising method to predict variation in home range size, whereby it appears that with higher spatial resolution its predictive potential increases. LiDAR, in contrast, is not proved suitable for explaining variation in home range size under the circumstances given in this thesis.

supervised by Martin Wegmann, data provided by Benjamin Leunter and Mirjana Bevanda via the NP Bavarian Forest

you may also like:

New PhD student Lukas Block

New PhD student Lukas Block

We are pleased to welcome Lukas Block as a new PhD student.  Lukas holds a Master's degree in Geological Sciences from the Free University of Berlin, where he investigated the stratigraphic record of the Anthropocene in lacustrine sediments. He has gained...

Press Release by University of Würzburg about our Arctic research

Press Release by University of Würzburg about our Arctic research

Our work in the Arctic on Svalbard was covered by the press team of the University of Würzburg. It covers our focus on studying the region’s ecosystems and the effects of climate change on its environment using Earth Observation methods. Please see the german version...

Prof Gustau Camps-Valls visits DLR-EOC

Prof Gustau Camps-Valls visits DLR-EOC

Today we had the great pleasure to welcome Prof Gustau Camps-Valls at DLR's Earth Observation Center (EOC).   Prof Gustau Camps-Valls is a Full Professor in Electrical Engineering and leads the Image and Signal Processing (ISP) group at Universitat de València (...

Advancing Forest Inventory: Field Trip to Sailershausen

Advancing Forest Inventory: Field Trip to Sailershausen

Today, staff from the Earth Observation Research Cluster conducted a field trip to Sailershausen to visit three fully inventoried forest plots and to discuss examples of remote sensing applications with the forestry administration of the University of Würzburg. The...

PhD defense by Alexandra Bell

PhD defense by Alexandra Bell

We cordially invite all EORC staff members, interested colleagues as well as students and the interested public to join the public defense by Alexandra Bell on her PhD "Spaceborne Remote Sensing for Policy - Supporting National Compliance with International Policy...