BSc thesis “modeling species distribution in Kenya” finalised

BSc thesis “modeling species distribution in Kenya” finalised

October 20, 2014

Annika Rudolph a BSc student handed in her BSc thesis on species distribution modeling in Kenya using remote sensing data and the randomForest model. It is impressive what she achieved within 8 weeks without any prior R knowledge. All remote sensing data as well as statistical modeling were done in R, a lot of effort has also been put into the acquisition of relevant remote sensing imagery BSc_Rudolph_workflow.

 

In the passed decades global environmental changes such as climate and land-use changes and anthropogenic pressure increased. As a result the world’s biological diversity faces exceptional threat with following increasing rate of biodiversity loss. It becomes important to assess and
monitor actual or potential geographic distribution of species to prevent this ongoing loss. This has become an important component of conservation planning in recent years. A wide variety of modeling techniques have been developed for this purpose, such as remote sensing methods. These models ordinarily utilize associations between environmental variables and known species occurrence records to identify environmental conditions within which populations can be maintained. The spatial distribution of environments that are suitable for the species can then be estimated across a study region. In this study species distribution is estimated in Kenya using environmental variables derived
from remotely sensed data such as Moderate Resolution Imaging Spectroradiometer (MODIS). The focus of this work lies on the comparison between two approaches in terms of their appropriateness for predicting species distribution within the study area. The first approach
analyzes the species probability from statistics of all summed up species. The second approach examines species probability for each species and sums up statistics afterward. The results provide an overview of the predicted species probability in regard to their vicinity to Protected Areas.
For each approach the Pearson’s coefficient of correlation between observations and predictions (r2) and Receiver Operating Characteristics (ROC) is calculated. The results of the Random Forest algorithm reach a r2 of 0.49 for the first approach and 0.11 for the second approach. ROC is 0.88 for the first approach and 0.67 for the second approach. These results exhibit reasonable significance. This study showed that the predicted probability of species distribution is close to the actual probability for the first approach. The second approach is far from the actual probability.

you may also like:

EORC at the International Africa Festival 2025 in Würzburg

EORC at the International Africa Festival 2025 in Würzburg

If you know Würzburg, you certainly know the International Africa Festival, Europe's largest and oldest festival for African music and culture. For 15 years in a row now, the university tent has been an integral part of the festival. This is where the...

EO4CAM meeting at LfU in Augburg on grassland in Bavaria

EO4CAM meeting at LfU in Augburg on grassland in Bavaria

As part of the EO4CAM project (Earth Observation Laboratory for Climate Adaption and Mitigation), representatives of the Bavarian Environment Agency (LfU), the German Aerospace Centre (DLR), and the Earth Observation Research Cluster (EORC) met at the LfU in...

New R Package Enhances UAS Research and Planning

New R Package Enhances UAS Research and Planning

We’re excited to share the development of a new R package created by our PhD student, Antonio Castaneda Gomez, whose contributions to Uncrewed Aerial Systems (UAS) research continue to impress. Known as the brain behind many of our UAS data collection...

Radio Bavaria BR2 covered our activities at the Africa-Festival

Radio Bavaria BR2 covered our activities at the Africa-Festival

Once again, our team proudly took part in the International Africa Festival in Würzburg, continuing our active participation within the University of Würzburg's exhibition—a tradition we’ve upheld for many years. This year’s event highlighted the ongoing commitment of...

Mapping Paleontology using UAS on cliffs

Mapping Paleontology using UAS on cliffs

We’ve recently started an exciting research project focused on mapping steep rock slopes that contain valuable paleontological information. Unlike most drone surveys that focus on horizontal ground surfaces, our work is aimed vertically—capturing data along exposed...