M.Sc. handed in on animal movement and remote sensing

M.Sc. handed in on animal movement and remote sensing

March 1, 2017

The M.Sc. thesis “Can animal movement and remote sensing data help to improve conservation efforts?” by Matthias Biber M.Sc. student within the Global Change Ecology program handed in his thesis. He explored the potential of remote sensing data to explain animal movement patterns and if these linkages can help to improve conservation efforts. He used Zebra as study animal in Southern and Eastern Africa. The second supervisor of his M.Sc. was Prof. Thomas Müller from BIK-F.

 

abstract:
Climate and land-use change have a growing influence on the world’s ecosystems, in particular in Africa, and increasingly threaten wildlife. The resulting habitat loss and fragmentation can impede animal movement, which is especially true for migratory species. Ungulate migration has declined in recent years, but its drivers are still unclear. Animal movement and remote sensing data was combined to analyse the influence of  various vegetation and water indices on the habitat selection of migratory plains zebras in Botswana’s Ngamiland. The study area experienced a more or less steady state in normalised difference vegetation index (NDVI) over the last 33 years. More than half of the study area was covered by PAs. NDVI increased stronger in PAs compared to areas that were not protected. NDVI was always higher in the Okavango Delta  compared to the Makgadikgadi Pans. Although zebras are thought to select for areas with high NDVI, they experienced a lower NDVI in the Makgadikgadi grasslands during wet season. Step selection functions (SSFs) showed that NDVI derived from Landsat as well as NDVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) were significant drivers of habitat selection across all individuals. Migration  seems to be driven by the high nutritional value of the Makgadikgadi grasslands and not seasonal resource limitation. Landsat imagery was shown to provide different environmental information compared to MODIS data. This highlights not only the importance of NDVI for explaining animal movement, but also the importance of Landsat imagery for monitoring habitat extent and fragmentation. Incorporating the animal’s  behavioural state and memory into SSFs will help to improve our ecological understanding of animal movement in the future.

you may also like:

Field work in Africa for Fire Mapping

Field work in Africa for Fire Mapping

Our UAS research group is currently out in the field collecting a wide range of environmental data. Fieldwork isn’t only about flying drones – it also involves hands-on problem-solving from coding to practical implications, from soldering and repairing to inventing...

Jeroen Staab successfully defended his PhD thesis

Jeroen Staab successfully defended his PhD thesis

We congratulate Jeroen Staab on his successful defense of his PhD thesis. His thesis is titled “A geographic perspective on noise in urban areas and beyond: Using multimodal data and machine learning techniques”. Jeroen has pursued his work at the Earth...

Exploring the Desert: Farimah’s Internship at Gobabeb in Namibia

Exploring the Desert: Farimah’s Internship at Gobabeb in Namibia

We’re excited to share that our EAGLE MSc student, Farimah, is currently spending her internship at the renowned Gobabeb Namib Research Institute, nestled in the heart of the Namib Desert—one of the oldest and most unique desert ecosystems in the world. Farimah’s...

Field Impressions from the Beech Decline Survey

Field Impressions from the Beech Decline Survey

In late July, PhD student Julia Rieder and EAGLE student Henning Riecken (InnoLab) conducted field visits to several beech forest stands in Northern Bavaria. Their survey covered regions including the Rhön, the Steigerwald, and areas around Würzburg and Bayreuth, as...

EAGLE Advanced Course in Applied Programming for Urban Studies

EAGLE Advanced Course in Applied Programming for Urban Studies

Our EAGLE students recently wrapped up the Applied Programming for Urban course by our PhD student De-Cyuan Jheng — a hands-on, advanced continuation of last semester’s Spatial Python for Remote Sensing. Building on their foundational skills, this course further...