M.Sc. handed in: Quantifying land cover change using remote sensing data in a transboundary protected area

M.Sc. handed in: Quantifying land cover change using remote sensing data in a transboundary protected area

May 16, 2017

Henrike Schulte to Bühne handed in her M.Sc. thesis “Quantifying land cover change using remote sensing data in a transboundary protected area” supervised by Nathalie Pettorelli (ZSL) and me. From the abstract: Biodiversity is declining at unprecedented rates as a result of global environmental change, threatening ecosystem stability and resilience, on which human well-being ultimately depends. Transboundary cooperation is being promoted as an effective way to conserve biodiversity that straddles national borders. However, monitoring the ecological outcomes of these large-scale endeavours is challenging, and as a result, the factors and processes likely to shape their effectiveness remain poorly identified and understood. To address this knowledge gap, this thesis quantified loss and fragmentation of natural vegetation across the W-Arly-Pendjari transboundary protected area complex, a key biodiversity hotspot in West Africa. Land cover maps for 2000, 2006 and 2013 were generated by combining open source optical remote sensing data with spectral change analyses and supervised classification algorithms to quantify loss and fragmentation of natural vegetation as a result of agricultural expansion. There was widespread agricultural expansion outside protected areas between 2000 and 2013, whereas expansion was limited inside protected areas. Additionally, natural vegetation was less fragmented inside than outside protected areas. Protected areas with high protection status appeared considerably more effective at preventing land conversion, and had less fragmented natural vegetation, than other protected areas. There were marked differences in cropland expansion rates between countries, which might be linked to differences in rural population growth. Altogether, these results indicate that transboundary protected areas can be relatively successful at reducing human pressure on biodiversity. However, there can be considerable spatial heterogeneity in anthropogenic pressure across transboundary protected area complexes, which highlights the need for more comprehensive assessments of this mode of biodiversity protection; these assessments could capitalise on the current  availability of remote sensing information.

you may also like:

EORC at the International Africa Festival 2025 in Würzburg

EORC at the International Africa Festival 2025 in Würzburg

If you know Würzburg, you certainly know the International Africa Festival, Europe's largest and oldest festival for African music and culture. For 15 years in a row now, the university tent has been an integral part of the festival. This is where the...

EO4CAM meeting at LfU in Augburg on grassland in Bavaria

EO4CAM meeting at LfU in Augburg on grassland in Bavaria

As part of the EO4CAM project (Earth Observation Laboratory for Climate Adaption and Mitigation), representatives of the Bavarian Environment Agency (LfU), the German Aerospace Centre (DLR), and the Earth Observation Research Cluster (EORC) met at the LfU in...

New R Package Enhances UAS Research and Planning

New R Package Enhances UAS Research and Planning

We’re excited to share the development of a new R package created by our PhD student, Antonio Castaneda Gomez, whose contributions to Uncrewed Aerial Systems (UAS) research continue to impress. Known as the brain behind many of our UAS data collection...

Radio Bavaria BR2 covered our activities at the Africa-Festival

Radio Bavaria BR2 covered our activities at the Africa-Festival

Once again, our team proudly took part in the International Africa Festival in Würzburg, continuing our active participation within the University of Würzburg's exhibition—a tradition we’ve upheld for many years. This year’s event highlighted the ongoing commitment of...

Mapping Paleontology using UAS on cliffs

Mapping Paleontology using UAS on cliffs

We’ve recently started an exciting research project focused on mapping steep rock slopes that contain valuable paleontological information. Unlike most drone surveys that focus on horizontal ground surfaces, our work is aimed vertically—capturing data along exposed...