M.Sc thesis: Deciduous forest parameter retrieval using polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR) and LIDAR approaches

M.Sc thesis: Deciduous forest parameter retrieval using polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR) and LIDAR approaches

September 12, 2017

Earth observation methods have been important tools for forest management applications for several decades. Nevertheless, it is necessary to improve existing processes on the local and regional scales, in particular for retrieving biophysical forest attributes. TanDEM-X data with high spatial resolution are predestinated information sources for precise estimation of forest parameters such as tree height and aboveground biomass. Once the tree-scale estimates are validated across relevant forest types (e.g. deciduous forests, coniferous or mixed), these can be extrapolated to larger plot, watershed, regional or even national scales.

The utilization of three-dimensional remote sensing data sources like TanDEM-X and LIDAR for forest attribute estimation is an ongoing field of research. The derivation of forest parameters as a part of forest monitoring approaches is currently an important issue. This M.Sc thesis follows this idea by testing Tandem-X data using PolInSAR approach to derive forest parameters (e.g. height and aboveground biomass) for a small deciduous forest site in northeast Germany. A second pillar of research will focus on single tree-based estraction of tree heights using LiDAR point clouds. The results will be compared to enable drawing general and site-specific conclusions. Within the six-month project, the student will evaluate existing algorithms and processes and accordingly compare PolInSAR-, LiDAR- and field-based results. The aim is to improve the estimation of fundamental forest parameters such as forest height and biomass, in particular in context of Small-Scale Forest Inventories. The planned project will improve the calibration and validation of existing methods for analyzing Tandem-X datasets. It is worth mentioning that the methodology also entails estimation of potential errors and uncertainties.

This research will be carried out in the nature reserve Eldena, called Elisenhain. Established in 1961 and located in the southeast of Greifswald in Mecklenburg-Vorpommern, Germany. The protected area encompasses 407 ha and consists of mixed deciduous forests with high portions of European Beech (Fagus sylvatica) and common oak (Quercus robur). A small fraction of the whole nature reserve was chosen as test site, for which also reference field data have been already collected on aboveground biomass.

Briefly, the objective of this work is:

  • To evaluate the capability of spaceborne TDX data to map essential forest inventory parameters by applying polarimetric and polarimetric SAR interferometry techniques.
  • Ability to detect forest height and biomass at high spatial resolution using three-dimensional data sources including RADAR and LiDAR.

Test Site Location: Eldena, Greifswald with Tandem-X data (left) and Flat Earth Estimation and Removal (right)

In this regard, development and testing the existing models and algorithms to retrieve forest parameters from PolInSAR data will be performed to generate spatial maps of tree height, and biomass. Later, errors will be retrieved via validation with ground data and LiDAR data in terms of tree height and biomass.

 

Contact:

Dr. Nima Ahmadian (ahmadian.n@gmail.com)

Dr. Hooman Latifi (hooman.latifi@uni-wuerzburg.de)

Dept. of Remote Sensing, University of Würzbrug

you may also like:

New publication on forest health

New publication on forest health

A new publication on forest health monitoring lead by Angela Lausch just got published in Remote Sensing. From the abstract: "Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of...

Call for Master’s thesis at the Department of Remote Sensing

Call for Master’s thesis at the Department of Remote Sensing

In situ and radar-based assessment and analysis of the surface soil moisture and its dynamic in the agrarian landscape in South Italy

Objective Semi-arid to arid climate determines the natural water availability in the Mediterranean. In particular, groundwater reservoirs are the main source of freshwater in the Mediterranean region. Climate change as well as increasing water consumption in irrigated agriculture are identified as major drivers of increasing groundwater scarcity and overuse of fragile groundwater resources.

UAV images of the University Research Forest

UAV images of the University Research Forest

During our first field campaign in 2018 we also took some aerial pictures of the University Wuerzburg research forest north of Wuerzburg. One of these pictures is now part of an exhibition of the University Forest and we were happy to see the final use of our image....

most recent news:

innovative urban climate in-situ measurements for Earth Observation

innovative urban climate in-situ measurements for Earth Observation

Bikair is a project aiming at measuring urban climate parameters with in-situ and Earth Observation. It focuses on testing low-cost Arduino-based sensors in an urban environment such as the city of Würzburg. Eventually, the project aims to correlate in-situ data with...

WASCAL research project presented to Geography Students

WASCAL research project presented to Geography Students

Global change and regional action, a German contribution in West Africa through capacity development and research. The BMBF-funded project WASCAL-DE-Coop at the Institute of Geography and Geology. The Student Board of the Institute of Geography and Geology at the...