new article: ecological modelling to improve remote sensing disease risk analysis

new article: ecological modelling to improve remote sensing disease risk analysis

November 30, 2015

A new article by our former PhD student Dr. Yvonne Walz just got published. The article “Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling” aims at the advantages of using spatial modelling approaches for disease risk analysis using remote sensing. Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.

http://geospatialhealth.net/index.php/gh/article/view/398

you may also like:

Understanding Urban Heat in Germany

Understanding Urban Heat in Germany

In a world where summers grow ever hotter, understanding and combating urban heat islands is becoming more urgent than ever. A recent study by our Prof. Hannes Taubenboeck sheds new light on this challenge—and at its helm is Dr. Tobias Leichtle, Dr. Thilo Erbertseder...

Exploring Drought and Fire Impacts on African Savanna Vegetation

Exploring Drought and Fire Impacts on African Savanna Vegetation

In the past weeks, our research team has been preparing for a unique field experiment investigating how drought and fire influence African savanna vegetation. The work is part of the PhD by Luisa Pflumm, she is supported by our PhD student Antonio Castaneda and his...

Field work in Africa for Fire Mapping

Field work in Africa for Fire Mapping

Our UAS research group is currently out in the field collecting a wide range of environmental data. Fieldwork isn’t only about flying drones – it also involves hands-on problem-solving from coding to practical implications, from soldering and repairing to inventing...

Exploring the Desert: Farimah’s Internship at Gobabeb in Namibia

Exploring the Desert: Farimah’s Internship at Gobabeb in Namibia

We’re excited to share that our EAGLE MSc student, Farimah, is currently spending her internship at the renowned Gobabeb Namib Research Institute, nestled in the heart of the Namib Desert—one of the oldest and most unique desert ecosystems in the world. Farimah’s...