new article: ecological modelling to improve remote sensing disease risk analysis

new article: ecological modelling to improve remote sensing disease risk analysis

November 30, 2015

A new article by our former PhD student Dr. Yvonne Walz just got published. The article “Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling” aims at the advantages of using spatial modelling approaches for disease risk analysis using remote sensing. Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.

http://geospatialhealth.net/index.php/gh/article/view/398

you may also like:

Spatial R Packages Showcase by our EAGLE students

Spatial R Packages Showcase by our EAGLE students

We are very proud to share the diverse submissions of spatial R packages within the EAGLE M.Sc. course of Ariane Droin and Martin Wegmann aiming at advancing our students' knowlege about programming for environmental analysis, geospatial visualization, and ecological...

NetCDA acitivities at EGU

NetCDA acitivities at EGU

We had a wonderful day yesterday at the EGU with NetCDA. We were pleasantly surprised by the great interest in climate-related capacity development activities in Africa. Throughout the day, we engaged in enriching discussions with many inspiring colleagues from a wide...