Successful Master Thesis Defense by Konstantin Müller

Successful Master Thesis Defense by Konstantin Müller

m

January 14, 2025

On January 14th, Konstantin Müller successfully defended his master’s thesis titled “Animal Path Segmentation and Analysis via Generalized Deep Neural Network Regression”. Supervised by Jakob Schwalb-Willmann and Dr. Mirjana Bevanda, the presentation was delivered to a large audience, followed by an engaging and thought-provoking discussion.

Animals play a vital role in maintaining healthy ecosystems, and understanding their behavior is essential for assessing the health and state of their environment. Animal movements—whether small-scale or extensive—leave traces, such as paths or resting sites, that can provide valuable insights. This study leverages UAV-based RGB data to accurately locate and segment animal paths from an aerial perspective. The proposed approach captures continuous data on animal movements, offering a comprehensive overview of the behaviors of all animals contributing to the movement process.

By focusing on path observation rather than directly monitoring animals, this method avoids challenges associated with traditional tracking methods, such as natural protection regulations or connectivity limitations in remote habitats. The study is primarily applied to the Kruger National Park (KNP), South Africa, where understanding animal behavior is critical for conservation management. The movement patterns derived from animal paths serve as key indicators of habitat utilization and environmental influences, such as droughts.

Building on established line delineation tasks like road segmentation, this research explores the use of convolutional neural networks (CNNs), particularly encoder-decoder architectures, to map animal paths from UAV data. The project addresses three key research questions:

  1. The impact of ground truth data generation on segmentation accuracy.
  2. The contributions of network enhancements to improve segmentation performance.
  3. The generalizability of the model to diverse natural environments.

The findings demonstrate that CNNs can effectively segment animal paths, even in challenging conditions like heavily vegetated or overgrown trails. The networks accurately detect path directions, achieving improved performance through dynamic ground truth generation that estimates individual path widths. Moreover, architectural enhancements, including denser connections and attention modules, increased model accuracy by over 7%.

This research presents an autonomous approach to capturing animal movement patterns through path segmentation, opening new opportunities for further methodological development using advanced neural network techniques and in-depth analysis.


you may also like:

EORC at the GfÖ Annual Symposium 2025 in Würzburg

EORC at the GfÖ Annual Symposium 2025 in Würzburg

Last week, EORC staff co-organized and partizipated in the Ecological Society of Germany, Austria and Switzerland (GfÖ) Annual Symposium 2025, this year hosted at University of Würzburg. The symposium, attended by more than 600 people, covered a wide range of topics...

New study on the conservation of biodiversity in West Africa

New study on the conservation of biodiversity in West Africa

A new study by our team, led by Insa Otte, on the conflict between biodiversity conservation in protected areas and agricultural development in West Africa has been published in the journal Natur und Landschaft. The abstract: According to the Human Development Report...

New study on invasive species in Rwanda

New study on invasive species in Rwanda

A new publication by EORC members Lilly Schell, Insa Otte, Sarah Schönbrodt-Stitt and Konstantin Müller, was just published   in the Journal Frontiers in Plant Science. Their study, “Synergistic use of satellite, legacy, and in situ data to predict spatio-temporal...

Poster Presentations at the GfÖ-Conference in Würzburg

Poster Presentations at the GfÖ-Conference in Würzburg

Being part of the organizers of this year's GfÖ-Conference in Würzburg our staff members Sonja Maas, Jakob Schwalb-Willmann and Maninder Singh Dhillon were happy to present the posters on their research topics today. The annual meeting of the GfÖ (Society for Ecology)...

Bridging Scales: How Radar Satellites supports Crop Monitoring

Bridging Scales: How Radar Satellites supports Crop Monitoring

In an era of climate uncertainty and increasing pressure on agricultural systems, understanding how crops grow and respond to environmental stress is more important than ever. A new study led by researchers from Martin-Luther-University Halle-Wittenberg, in close...