Topic for M.Sc thesis: Application of multi-seasonal RapidEye satellite imagery for inventory of private and municipal forests in the northern Black Forest

Topic for M.Sc thesis: Application of multi-seasonal RapidEye satellite imagery for inventory of private and municipal forests in the northern Black Forest

February 20, 2015

In this M.Sc thesis, a set of multi-seasonal satellite imagery from RapidEye will be applied to develop algorithms and improve the existing ones in tree species mapping across a portion of mixed forest stands in northern Black Forests in the state of Baden-Württemberg in Germany. The focus of the research will be on small private forest patches, for which conducting regular forest inventories has always been a major challenge. For most private forests (i.e. more than 30% of the forest area in Baden-Württemberg) there is a shortage of accurate and up-to-date forest inventory data.

To this aim, a set of multi seasonal RapidEye satellite imagery with a spatial resolution of about 5m are obtained from the Black Bridge company. The data cover 4 seasonally different times of the year, including March 2014, May 2013, July 2014, September 2013, and October 2012. Based on the fact that the tree species show phonological (and in turn spectral) differences during the year, these comprehensive dataset will be used here to map different tree species and other important forest characteristics, such as needle fall, storm effects or effects caused by bark beetles.

WebDemo-Bestandsabgrenzg-Oberhoehe-top100trees-rgb

Both the results of the single tree-based aerial photo interpretation as well as those from a small area in which all pine trees have been mapped will be used as reference data. In addition, validation data can also be achieved from a number of aerial photo-interpreted stands dominated by Scots pine. The data for the neighboring public forests can also be accessed via the local forest enterprises.

The work will be carried out in close cooperation between University of Würzburg and the LandConsult company (Dr Markus Weidenbach). A Visit to the study area in the northern Black Forest is supported by the LandConsult company.

Moreover, Dr. Piotr Tompalski from the University of British Columbia (Canada) will give advices as an external supervisor.

For questions on this topic, please contact Dr. Hooman Latifi at the Dept. of remote sensing of the University of Würzburg (hooman.latifi@uni-wuerzburg.de).  A more comprehensive description of this topic can be found at following address:

http://www.geographie.uni-wuerzburg.de/fileadmin/04140500/Dokumente/Stellenausschreibungen/Abschlussarbeiten/masterarbeit1_13022015_EN.pdf.

 

you may also like:

Deep learning course by Thorsten Hoeser

Deep learning course by Thorsten Hoeser

This week Thorsten Hoeser, an expert in deep learning and data science, taught AI methods in remote sensing at our International EAGLE Earth Observation MSc Program. In this special module, Thorsten covered essential topics on the cutting-edge techniques for...

New Team Member: Sofia Haag

New Team Member: Sofia Haag

Sofia Haag joined the EORC in February 2025 as a research assistant for the EO4CAM project. After completing her Bachelor's degree in Geography at the University of Heidelberg, she pursued her Master's in Applied Physical Geography at the University of Würzburg. Sofia...

“Super-Test-Site Würzburg” consortium meeting

“Super-Test-Site Würzburg” consortium meeting

The core team of our “Super-Test-Site Würzburg” consortium (University of Würzburg, the Karlsruhe Institute of Technology, the Friedrich-Alexander-University Erlangen-Nürnberg and the German Aerospace Center) met again in Würzburg on the 18th of February 2025....