Change Vector Analysis explained graphically

Change Vector Analysis explained graphically

January 19, 2016

We explained in our book “Remote Sensing and GIS for Ecologists – Using Open Source Software” among other change detection methods also the change vector analysis practically using the rasterCVA() command in the RStoolbox package, as well as outlined the approach graphically. During my last lecture on temporal and spatial remote sensing approaches I realized that the graphic needs some fixing as well as the RStoolbox function, moreover, certain explanations were missing. Hence, Benjamin Leutner adapted the rasterCVA() command and I tested it again and created new graphics explaining this approach for land cover change analysis.

 

land_cover_change_vector_NEW_Wegmann_Leutner_www_remote-sensing_eu_Ecology_Book

general Change Vector analysis explained. Graphic from the book “Remote Sensing and GIS for Ecologists

The first graph that is also in our book shows the general approach. Two bands for each year (e.g. the RED and NIR band, but also the Tassled Cap output can be used) are taken and the changes in pixel values between these two years are shown as angle and magnitude.

 

We realized some things were missing:  first the explanation what the angle actually means and second a link of actual results and the xy-graph.

change_vector_analysis_angle_magnitude_NEW_Wegmann_Leutner_www_remote-sensing_eu_and_BOOK_ecosens_org

Change Vector analysis explained on three change classes using the actual rasterCVA() output and band values.

In these new figures we show the actual results of the land cover change vector analysis using band 3 and 4 of Landsat (E)TM for the study region used in our book and three angles and magnitudes of pixels values between 1988 and 2011.

change_vector_Angle_explanation_Wegmann_Leutner_www_remote-sensing_eu_BOOK_RS_Ecology

Meaning of angle and magnitude values from rasterCVA() analysis in RStoolbox

In the second image we outline the meaning of the angle provided by rasterCVA() as well as the magnitude which is the euclidean distance of the pixel values between 1988 and 2011.

 

Please approach us if you have any suggestion how to improve it or if we introduced any errors.

Please update to the newest development version to access the updated RStoolbox functionality!

 

More updates and graphics provided on the books’ webpage.

you may also like:

Presenting Our UAS Research at the UFS Science Team Meeting

Presenting Our UAS Research at the UFS Science Team Meeting

At the recent UFS (Umweltforschungsstation Schneefernerhaus) science team meeting, our group had the opportunity to present current and planned UAS-based research activities in the high-mountain environment surrounding the Zugspitze. The meeting offered an ideal...

BetaFor DFG Project Undergoes Evaluation in Würzburg

BetaFor DFG Project Undergoes Evaluation in Würzburg

In a productive and inspiring atmosphere, our BetaFor DFG project recently welcomed a panel of internationally renowned scientists for its official evaluation. The visit combined the traditional presentation format with a hands-on excursion into the project’s core...

🎄 A Gentle Touch of Christmas in the Foyer

🎄 A Gentle Touch of Christmas in the Foyer

As the year draws to a close and deadlines, reports, and project milestones converge, December often feels like a sprint. Yet this year, something is different the moment you step through the doors of our building. ✨ A Christmas Tree that Tells a Story Standing...

MainPro Project Meeting: Next Project Phase Launched

MainPro Project Meeting: Next Project Phase Launched

On Friday, November 21st, a MainPro project meeting was held to exchange ideas with our cooperating small and medium-sized enterprises (SMEs). Within our MainPro project, we aim to identify the changes caused by climate change in the Main Valley and its surroundings...