Managing raster data with PostGIS and Python

Managing raster data with PostGIS and Python

February 3, 2016

PostGIS is the spatial extension of the open source database management system PostgreSQL. It helps you to manage your data (vector and raster) within a coherent geodatabase through a variety of spatial functions. Having a spatial database, the times of data clutter and messiness are over, especially when you are dealing with big data. Initially PostGIS was created to for the handling of vector data only. However, during the recent years more and more raster handling functionalities were introduced. For a complete overview of spatial raster operators, have a look at: http://postgis.net/docs/manual-2.1/RT_reference.html

 

Download and install PostgreSQL and PostGIS

Download PostgreSQL from here: http://www.postgresql.org/download/

The installer for PostgreSQL includes the PostgreSQL server, pgAdmin III; a GUI for managing and developing your databases, and StackBuilder; a package manager that can be used to download and install additional PostgreSQL applications and drivers. From the StackBuilder GUI, select Spatial Extensions and install the respective PostGIS 2.2 Bundle for PostgreSQL.

 

Create a new spatial database

In pgAdmin, create a new database (right click: New Database):

db

and the spatial extension postgis (right click on Extensions: New Extension):

pg

This will create a first table within your DB: spatial_ref_sys that contains the coordinate systems, map projections and the spatial indeces.

 

Set up Python

Python provides awesome functionality for the automated raster processing within PostGIS. Automatization is necessary especially when you deal with a lot of data and iterative processes. Python scripting is also needed as the pgAdmin GUI does not support the access of all functions.

Download Python 2.7 from here: https://www.python.org/downloads/

Psycopg2 is a Python library that accesses the objects of the PostgreSQL server and allows the execution of PostGIS commands from Python.

Download psycopg2 from here: http://www.stickpeople.com/projects/python/win-psycopg/2.6.1/psycopg2-2.6.1.win32-py2.7-pg9.4.4-release.exe

 

PostGIS scripting with Python

Import the Python libraries:

import psycopg2  
import subprocess 
import sys, os

Set up input path and a loop that goes through all TIFs in the directory:

input_path = "C:\\Data\\Raster\\"

for raster in os.listdir(input_path):    
    if raster.endswith(".tif"):
       name = raster.split(".tif")[0]
       raster = os.path.join(input_path, raster)

Connect to the PostgreSQL server:

       os.environ['PATH'] = r';C:\Program Files\PostgreSQL\9.4\bin'
       os.environ['PGHOST'] = 'localhost'
       os.environ['PGPORT'] = '5432'
       os.environ['PGUSER'] = 'postgres'
       os.environ['PGPASSWORD'] = 'postgres'
       os.environ['PGDATABASE'] = 'raster_database'
     
       rastername = str(name)
       rasterlayer = rastername.lower()
  
       conn = psycopg2.connect(database="raster_database", user="postgres", host="localhost", password="postgres") 
       cursor = conn.cursor()

Import each raster through raster2pgsql function (coordinate system epsg code is set to 32633 UTM):

       cmds = 'raster2pgsql -s 32633 -t 2000x2000 "' + raster + '" |psql'
       subprocess.call(cmds, shell=True)

Now run any PostGIS command you like. In this example we run rescale the raster to 250m spatial resolution and reproject it from UTM 33N to WGS84 (epsg code 4326). At the end, the raster may be exported locally to *.hex data format. The export is optional, we could also convert the raster to CSV or numpy array.

       sql = "UPDATE " + rasterlayer + " SET rast = ST_Rescale(rast, 250, 'Near'); \
              UPDATE " + rasterlayer + " SET rast = ST_Transform(ST_SetSRID(rast,32633),4326);"
       cursor.execute(sql)
       conn.commit()

       rql = "COPY (SELECT encode(ST_AsTIFF(rast), 'hex') AS tif FROM " + rasterlayer + ") TO 'C:/Users/Data/" + rasterlayer + ".hex';"
       cursor.execute(rql)
       conn.commit()

 

you may also like:

Spatial Earth Observation R packages by our EAGLEs

Spatial Earth Observation R packages by our EAGLEs

Our EAGLE students that took and passed our Introduction to spatial programming course had to submit an R package that applies spatial methods for a variety of Earth Observation data. We are very proud to show the huge diversity of very interesting and useful R...

Flowmapper, a simple tool for visualizing geographic flows in R

Flowmapper, a simple tool for visualizing geographic flows in R

One of our PhD students, Johannes Mast, just released a new R package called "flowmapper" which he developed and used within his PhD. Flowmapper (https://github.com/JohMast/flowmapper) is a new R package that allows users to create beautiful, informative maps of...

New publication on Tree Competition R package TreeCompR

New publication on Tree Competition R package TreeCompR

One of our staff members of the Earth Observation Research Cluster (EORC), Julia Rieder, just published a new R package titled “TreeCompR: Tree competition indices for inventory data and 3D point clouds”. From the abstract: 1. In times of more frequent...

Our remote sensing toolbox RStoolbox updated

Our remote sensing toolbox RStoolbox updated

Last year the R remote sensing universe changed a bit and sp plus (partly) raster was deprecated. Terra/stars and sf replaced the deprecated packages and we had to update our packages that are depending on these packages. We finally managed to update our RStoolbox...

R package for Migration Analysis released

R package for Migration Analysis released

R package for Migration Analysis released We are happy to announce the initial release of our MigrationDetectR package. The package has been developed by Johannes Mast and applied as part of our work in the MIGRAWARE project. It is now released as part of the DLR...